
Engineering Analysis with Boundary Elements 72 (2016) 65–77
Contents lists available at ScienceDirect
Engineering Analysis with Boundary Elements
http://d
0955-79

n Corr
E-m
journal homepage: www.elsevier.com/locate/enganabound
Three-dimensional fracture propagation with numerical manifold
method

Yongtao Yang a, Xuhai Tang b,n, Hong Zheng c, Quansheng Liu b, Lei He d

a State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China
b School of Civil Engineering, Wuhan University, Wuhan, China
c Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
d School of Civil Engineering, Monash University, Australia
a r t i c l e i n f o

Article history:
Received 15 December 2015
Received in revised form
12 August 2016
Accepted 13 August 2016

Keywords:
Fracture propagation
Three dimensional simulation
Numerical manifold method (NMM)
Maximum tensile stress criterion
x.doi.org/10.1016/j.enganabound.2016.08.008
97/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: xuhaitac@163.com (X. Tang).
a b s t r a c t

By introducing the concept of mathematical cover and physical cover, the numerical manifold method
(NMM) is able to solve continuous and discontinuous problems in a unified way. In this paper, the NMM
is developed to analyze three dimensional (3D) fracture propagation. The maximum tensile stress cri-
terion is implemented to determine whether the fracture will propagate and the direction of fracture
propagation. Three benchmark problems are analyzed to validate the present algorithm and program.
The numerical results replicate available experimental results and existing numerical results. The present
algorithm and 3D NMM code are promising for 3D fracture propagation. They deserve to be further
developed for the analysis of rock mechanic problems in which the initiation and propagation of multiple
fractures, tensile and shear fractures, and fracture propagation under compressive loading are taken into
account.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Analyzing the evolution of fractures in fractured rock mass is of
great importance in many fields [1]. With the development of
computer science, the numerical method has become one of the
most effective approaches to understand fracture evolution, which
attracts a great number of researchers during the last decade. Up
to now, a great number of versatile numerical approaches have
been proposed to simulate fractures, such as Finite Element
Method (FEM) [2] with remeshing strategy, Boundary Element
Method (BEM) [3] and meshfree methods [4].

Nowadays, Finite Element Method (FEM) [2] is the most widely
used numerical approach in engineering and have been utilized to
simulate three-dimensional (3D) fracture propagation for several
decades. However, it still suffers from the significant difficulties in
mesh generation and refinement during fracture simulation. In
FEM, fracture surfaces must coincide with the element boundaries,
therefore the meshes must be updated at each simulation step.
Additionally, the meshes are required to be more refined in the
vicinity of fracture tips than in the remainder of the model, in
order to obtain sufficiently accurate solution for the fracture ana-
lysis [5]. Especially, when the problems are taken into account in
3D, the simulations are significantly more difficult. Polygonal Fi-
nite Element Method (PFEM) [6–8] is a development of FEM,
which is able to construct proper approximations on polygonal
elements, and provides an effective approach to remesh and re-
finement in two dimensions [9]. In order to model the develop-
ment of arbitrary multiple fractures in 3D, Paluszny has developed
a robust simulator using global remeshing strategy [10], which has
been successfully utilized in investigating block caving system [11–
13], oil recovery [14,15], and predicting the permeability of three-
dimensional fractured porous rock [16]. However, global strategy
is not suitable in some special problems. When the fractured zone
is obviously smaller than the whole computational model, this
global strategy is not cost-effective. Therefore, a number of
methodologies are developed for introducing fractures into com-
putational model without remeshing, including the numerical
manifold method (NMM) which is developed in this work.

The Boundary Element Method (BEM) is an alternative ap-
proach to solve fracture propagation problems because it could
reduce the dimensions of the problems and simplify the com-
plexity [17]. In 2014, Wu and Olson [18] utilized BEM to study the
simultaneous multiple fracture treatments in hydraulic fracturing.
The main drawbacks of BEM are the difficulty to solve nonlinear
problems [19] and the difficulty to handle computational models
which contains many different materials.

Meshfree methods do not need a mesh to discretize the pro-
blem domain, and therefore are very suitable to solve complex
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Fig. 1. Problem domain (thick lines) and mathematical cover (fine lines) [40].

Fig. 3. Manifold elements from the PC [40].
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practical problems such as large deformation [20] and fracture
propagation simulation [21]. The main contributions to the de-
velopment of meshfree methods are known in the literatures as
Element-Free Galerkin method (EFG) [22], Reproducing Kernel
Particle Method (RKPM) [23] and stable particle methods [24].
Bordas et al. [25] have shown that the high flexibility of meshfree
methods can be exploited to model arbitrary three-dimensional
fracture initiation, propagation, branching and junction in non-
linear materials. Nonetheless the high computational cost and
complex process in constructing the trial functions will deteriorate
the stability and efficiency of numerical integration [26]. More-
over, they cannot be implemented into existing finite element data
structures [19].
Fig. 2. Physical patches from mathematical patches [40], (a) Physical patches Ω −
p

1 1 and
generated from mathematical patch Ω m

2 (c) Physical patches Ω −
p

1 3 and Ω −
p

2 3 generated
In order to overcome the burden of meshing and remeshing of
the FEM in modeling three-dimensional fracture problems, some
Partition of Unity [27] based approaches have been developed,
which can be considered as an improvement of FEM. Typical of
them are the eXtended Finite Element Method (XFEM) [28,29] and
generalized finite element method (GFEM) [19,30]. In XFEM, the
generalized Heaviside functions and the asymptotic fracture-tip
functions are incorporated into the FEM to account for the frac-
tures, without the need for the finite element mesh to conform to
the fractures [31]. In GFEM [30], the standard finite element spaces
are augmented by adding special functions which reflect the
known information about the boundary value problem and the
input data to model problems with multiple straight reentrant
corners, voids, and fractures.

In 1991, Shi [32] developed numerical manifold method (NMM)
for geotechnical engineering, which also falls into the category of
the partition of unity. The main attractive advantage of NMM is to
Ω −
p

2 1 generated from mathematical patch Ω m
1 (b) Physical patches Ω −

p
1 2 and Ω −

p
2 2

from mathematical patch Ω m
3 .



Fig. 4. A three-dimensional manifold element.

Fig. 5. Three-dimensional representation of fracture surface with triangular frac-
ture cell.

Fig. 7. Sketch of the beam under four-point loading.
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simulate continuous and discontinuous problems in a unified way.
NMM has been successfully applied to simulate fracture problems
in many fields. Chiou et al. [33] captured the mixed mode fracture
propagation trajectory by combining NMM with the virtual frac-
ture extension method, as well as auto-remeshing schemes. Terada
et al. [34] presented the finite cover method, alias of NMM, for
Fig. 6. An example to illustrate manifold ele
progressive failure analyses with cohesive fracture zone in het-
erogeneous solids and structures. Zheng et al. [35] reduced the
growth of multiple fractures to a nonlinear complementarity
problem (NCP) and simulated the propagation process with MLS-
based numerical manifold method. According to their report, some
interesting and profound phenomena in brittle fracture are re-
vealed. Ma and his coauthors [31,36] incorporated the concept of
singular physical cover into the NMM to model complex fracture
and fracture propagation problems. Ning et al. [37] adopted the
Mohr-Coulomb criterion with a tensile cut-off, and successfully
simulated the progressive failures of rock slopes, where frictional
contact of fracture surfaces is involved. Wu et al. [38] numerically
modeled and investigated the viscoelastic deformation behavior of
a sedimentary rock under different loading rates by incorporating
a modified 3-element viscoelastic constitutive mode in the NMM.
Zhang et al. [39] solved thermo-mechanical fracture of planar
solids problems with NMM, where the singularity of temperature
as well as displacement is reflected.

Although various fracture problems were solved by the NMM,
the previous work was limited in two-dimensional problems. In
this study, as a preliminary exploration in the discontinuity
modeling, the NMM is extended to investigate 3D fracture pro-
pagation of isotropic homogeneous materials. The outline of this
paper is as follows: in Section 2, the basic concept of NMM is
briefly introduced; Section 3 presents technique associated with
3D fracture propagation, such as fracturing algorithm and fracture
tracking in great detail. Several numerical examples are presented
in Section 4. Some conclusions are drawn in the last section.
2. Brief introduction to NMM

2.1. Basic concepts of NMM

In order to simulate continuous and discontinuous problems in
a unified way, two cover systems, namely, the mathematical cover
(MC) and the physical cover (PC) have been introduced into NMM.
In this section, the basic concept of NMM is briefly introduced,
more details can be found in [40,41].

The MC is composed of a series of mathematical patches (MPs),
Ωm

i , ( = … )i n1, , m . Here, nm is the number of all MPs. Different MPs
ment update during fracturing process.



Fig. 8. Fracture propagation within the beam under four-point loading obtained using 3D NMM.

Fig. 9. The comparison of fracture paths within the beam under four-point loading
obtained using 3D NMM and Polygonal Finite Element Method (PFEM), (a) Fracture
path with 3D NMM with different number of physical patches (b) Fracture path
with PFEM [9].

Fig. 10. The geometry and boundary conditions of the pre-notched disc.

Y. Yang et al. / Engineering Analysis with Boundary Elements 72 (2016) 65–7768
can partially overlap each other. The only requirement for MC is
able to cover the entire problem region Ω.

Associated with each MP Ωm
i , there is a weight function, ( )w ri

( = … )i n1, , m , with r the position vector, satisfying the following
properties

∑
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( )w ri is collectively called the partition of unity subordinating to
Ω{ }i

m .
As shown in Fig. 1, the computational domain Ω containing a

bifurcation fracture Γ with two fracture tips are covered by three
MPs, i.e., Ω m

1 - the bigger circle, Ω m
2 - the smaller circle, and Ω m

3 -
the rectangle.

By cutting all the mathematical patches Ω{ }i
m

1
3, one by one, with

the components of Ω, including the boundary, the material in-
terface and the fracture, the physical patches (PPs) are generated,
as shown in Fig. 2. From one mathematical patch Ωm

i , more than
one smaller domain might be created. We represent these smaller
domains by Ω −j i
p , ( = … )j n1, , i

p with Ω −j i
p called the j-th physical

patch created from the mathematical patch Ωm
i . Here, npi is the

number of all physical patches that are all created from the same
mathematical patch Ωm

i . The union of all Ω −j i
p ,

Ω∪ ∪ ( )= = − 2i
n

j
n

j i
p

1 1
m i

p

is named as physical cover (PC) and accordingly match Ω exactly.
Each physical patch Ω −j i

p contains the local geometric features
of the problem domain and can be assigned other given in-
formation. For example, Ω −

p
2 2 contains the fracture tip of fracture Γ

(see Fig. 2 (b)).
According to the geometric and mechanical features of Ω −j i

p , one

can construct a good enough local approximation ( )−u rj i over Ω −j i
p

to reflect the known information about the boundary value



Fig. 11. Fracture path within pre-notched disc obtained by 3D NMM θ( = °)90 .
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problem and the input data to model the problem. The formula-
tion of ( )−u rj i could be expressed as

Ω( ) = ( ) ∈ ( )− − − −u r T r d r, 3j i j i j i j i
p

where, vector −dj i is composed of the degrees of freedom for

physical patch Ω −j i
p , and ( )−T rj i is composed of some given func-

tions which could reflect the local behaviors of the solution over
Ω −j i

p , see details in [40].

By restricting ( )w ri defined on Ωm
i onto Ω −j i

p , ( = … )j n1, , i
p , the

weight function ( )−w rj i subordinate to Ω −j i
p is obtained. ( )−w rj i ,

( = … )j n1, , i
p , might have the same expression as ( )−w rj i , but they

have totally different domains of definition, corresponding to
Ω ( )− rj i , ( = )j n1 ,.., i

p , respectively, which all come from the same
mathematical patch Ωm

i . Besides, different local approximation
( )−u rj i are defined over each Ω −j i

p . This enables NMM to simulate
discontinuity across the common boundaries between physical
patches.
For simplicity of presentation, all Ω −j i
p , ( )−w rj i and ( )−u rj i are

coded with a single subscript and represented by Ωk
p, ( )w rk and

( )u rk , ( = … )k n1, , p , respectively. Here, np is the number of all the
physical patches, and defined as

∑=
( )=

n n
4

p

i

n

i
p

1

m

In conventional NMM, a manifold element, basic unit in integrat-
ing the weak formulation of the problem, is a common domain of
as many as possible physical patches and denoted by Ei in the
present paper. Fig. 3 displays all the twelve numerical manifold
elements generated from the MC shown in Fig. 1.

Then, the global approximation ( )u r in a manifold element Ei
could be obtained by adding all the local approximations multi-
plied by the weight functions



Fig. 12. The comparison between numerical simulation and experimental results for the fracture path of pre-notched disc θ( = °)90 , (a) 3D NMM (b) experimental result [54].
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∑( ) = ( ) ( ) ∈
( )=

w Eu r r u r r,
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n

k k i
1
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Theoretically, the MC can be constructed arbitrarily. Up to now,
however, for the simplicity of implementation, almost all the ap-
plications and developments of NMM have selected finite element
meshes to construct the MC. The mesh, which is independent
neither the internal discontinuities nor the external boundary, is
referred to as the mathematical mesh.

In regard to 2D case, it is best to choose regular meshes
(equilateral triangular or rectangular mesh) as the mathematical
mesh for the consideration of accuracy. If triangular mesh is used,
all the triangles around one node form one mathematical patch. If
rectangular mesh is used, all the rectangles around one node form
one mathematical patch.

2.2. Framework of 3D NMM

Considering 3D NMM, we can choose the tetrahedral mesh to
form the mathematic cover which should cover the entire problem
region Ω. All the tetrahedrons around one node form one math-
ematical patch. By cutting the mathematical patches one after
another with the components of the problem domain, including
the domain boundaries, the material interfaces, and the dis-
continuities, the physical patches (PPs) are generated. A manifold
element is the common part of four PPs. Four PPs can be regarded
as four generalized nodes of the manifold element (Fig. 4).

Then, the global approximation ( )x y zu , , in a manifold element
Ei in Eq. (5) could be rewritten as
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The weight functions in Eq. (6) take the form of
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Aij is algebraic component of Δ.
In general, the local approximations ( )x y zu , ,k defined on one

physical patch can be constant, linear or higher-order polynomials
[42]. In this study, the local approximations are taken as constants
for simplicity and avoiding the “linear dependence problems”
[43,44], although the higher-order polynomial terms enable us to
improve the accuracy of approximation.

Moreover, as discussed in the previous text, special functions
which reflect the known information about the boundary value
problem could be added into the local approximations to augment
the finite element spaces. Zheng et al. [40] have successfully added
the first two items of Williams' series [45] into the local approx-
imations of the singular patches to tackle partially fractureed
elements and fracture tip singularities. However, such a treatment
will subsequently complicate the computation including the in-
heritance of the degrees of freedom and initial stress for dynamic
problems, deploying special Gauss integration scheme for fracture
tip elements and dilute the ability to undertake integration ex-
plicitly [37]. It is especially computational expensive when dealing
with rock engineering problems which may involve hundreds or
even thousands of fractures within the problem domain. In the
present work, instead of adding the first two items of Williams'
series into the local approximations for the singular patches, we
regulate the fracture front stop at element boundaries to avoid
partially fractureed elements. Evidently, as discussed in [37], this
approach yields a degree of inaccuracy for a coarse mesh. How-
ever, accuracy could be improved by adopting a finer discrete
model.



Fig. 13. Fracture path within pre-notched disc for various steps obtained by 3D NMM .
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It is known that regular hexahedral mesh can be employed to
construct the MC of 3D NMM. However, as mentioned in [41], an
assemblage of regular tetrahedral mesh fails to completely fill the
3D space. Although tetrahedral mesh is possible through dividing
each hexahedron in a regular hexahedral mesh into several tet-
rahedrons, this will not be able to obtain the tetrahedral mesh
with optimal topological shape.

In this paper, for the simplicity of implementation, tetrahedral
mesh generated by ABAQUS is employed to construct the MC
within the problem domain without considering the fractures,
which means the mathematical mesh will coincide with the ma-
terial boundary. Then the fractures are deployed, followed by a
series of cutting operations discussed in great detail in [46] to
generate physical cover and manifold elements.

It is noted that, for our 3D NMM, mathematical cover only
needs to match the material boundary of problem domain, but do
not have to match the fractures, which is a significant advantage
over the FEM. Moreover, in the simulation of fracture propagation,
our 3D NMM can avoid the remeshing process which is another
important advantage over the FEM.
3. Numerical manifold method for 3D fracture propagation

The NMM is able to simulate continuous and discontinuous
problems in a unified way. Before applying it to simulate the
transition from continuum to discontinuum, a robust and easy
implementing fracture algorithm should be developed. In the past
decades, the fracture mechanics has been widely used and shown
its validity and accuracy through many benchmark problems.
However, fracture mechanics cannot deal with the initiation of
new fractures, because fracture mechanics is built for pre-cracked



Fig. 14. The comparison between numerical simulation and experimental results for the fracture path of pre-notched disc θ( = °)45 , (a) 3D NMM (b) 2D NMM (c) 2D DDA
[53] (d) experiment result [54].
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components or structures, although it can well resolve the stress
concentration near fracture tips and predict the possible propa-
gations of existing fractures. Moreover, it is difficult for fracture
mechanics to handle the complex fracture coalescences and in-
tersections encountered in practical engineering problems [37]. In
order to overcome the shortcoming of fracture mechanics, fracture
algorithm based on strength criterion is utilized [37], which is
named as Mohr-Coulomb criterion with a tensile cut-off. This
strength criterion has successfully simulated typical mode-I and
mode-II problems, as well as progressive failures of 2D rock slopes,
where frictional contact of fracture surfaces is involved. As a pre-
liminary exploration in 3D fracture propagation using NMM, we
will not consider frictional contact of fracture surfaces and initia-
tion of new fractures in this paper.

3.1. Maximum tensile stress criterion

The maximum tensile stress criterion has been widely used in
rock mechanics because the parameters of this criterion can be
conveniently determined by conventional uniaxial tensile test.
Therefore, the maximum tensile stress criterion is employed in the
3D NMM for fracturing modeling in the present study.

The maximum tensile stress criterion can be written as

σ = ( )T 10front
1 0

where T0 is tensile strength of the material and σ front
1 is the

maximum tensile stress of the fracture front. Once the maximum
tensile stress exceeds the tensile strength T0, the fracture front is
advanced normal to the maximum tensile stress direction. It is
noticed that the stress within each manifold element is constant
because a tetrahedral mesh is used to generate the MC and con-
stants are chosen as local approximations in the present paper.
Weighted average of the stresses of all the manifold elements near
the fracture front point is taken as the stress of a fracture front
point, and expressed as



Fig. 15. A perforated plate with a circle hole subjected to a uniform tensile loading.

Fig. 16. The fracture path inside a perforated panel with a circular hole subjected to a uniform tensile loading with the 3D NMM.

Fig. 17. The comparison of fracture paths within the perforated panel with a cir-
cular hole predicted obtained using 3D NMM and Meshfree method [56].
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Fig. 18. Geometry and boundary condition.

Table 1
The evolution of the maximum principal stresses along fracture front.

Fracture length (m) 0.10 0.25 0.35 0.45
Maximum principal stresses (MPa) 0.2820 0.3192 0.3940 0.4835
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where, nmel is the number of all the manifold elements near the
fracture front point, σ̂i is the stress vector of ith manifold element
and φi is the weight function, and expressed as

φ =
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ε
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+ ( )
L

d
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13i
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where di is the distance from the center of ith manifold element to
a fracture front point. ε is a very small, but positive number, and
set to be −1. 0 7 in the present work.

We also note that implementation of the fracture algorithm
based on maximum tensile stress criterion is much easier, com-
pared to the fracturing algorithm based on stress intensity factors.

3.2. Fracture trackings

The three dimensional fracture surface is mainly represented
by segments or by other methods including level sets. In the level
sets method applied to PU-based methods for three dimensional
fracture problems [28,47,48], the fracture front vectors of the
implicit representation of the fracture surface are computed based
on the gradients of the front and surface level sets. However, this
level set method may lead to an inaccurate representation of the
fracture front because the orthogonality of the surface and front
level set gradients does not always hold [48,49]. In this study, the
fracture surface is represented by an explicit three dimensional
triangulation.

Unlike Rabczuk et al. [50] using both triangular and quad-
rangular fracture cells to represent fracture surface, we only em-
ploy triangular fracture cell to fulfill the task for the purpose of
simplicity. Shown in Fig. 5 is a schematic diagram of three di-
mensional triangular fracture cells representing fracture surface.

3.3. Topology update during fracturing process

Once the stress state at fracture front violates the maximum
tensile stress criterion in Eq. (10), the old fracture front will ad-
vance to a new place. Some manifold elements which are near the
old fracture front may be intersected. The intersection may result
in manifold element with both regular and irregular shapes
(Fig. 6).

In addition, some neighborong physical patches are split into
two. Some other neighboring physical patches may be intersected.
In each step, each physical patch is stored using its outer shell
which consist of triangular cells. Here, each triangular cell consists
of three points. It is noted that each physical patch corresponds to
only one closed outer shell consisting of a series of closed loops,
which is a generalization of two dimensional cases [38]. If the
closed outer shell becomes two closed outer shells after cutting,
then the target physical patch is split into two.

Since some physical patches and some manifold elements are
altered, the physical patches for the related manifold elements
must be updated. Assuming a physical patch Ω{ }i

p is partitioned
into Ω{ }i

p
1 and Ω{ }i

p
2 , updating the physical patches for the manifold

elements can be fulfilled in two steps [37]. Firstly, all the manifold
elements initially associated with the physical patch Ω{ }i

p should
be found. Then, giving an arbitrary point within each manifold
element, if this point is within Ω{ }i

p
1 , Ω{ }i

p
1 is used to replace Ω{ }i

p ; if
not, Ω{ }i

p
2 is used to replace Ω{ }i

p .

3.4. Integration

In three-dimensional NMM, the manifold element, the basic
unit in integrating the weak formulation of the problem, can be an
arbitrarily shaped polyhedron [42]. Integration in NMM is usually
undertaken explicitly using the simplex integration method [37].
The main advantage of simplex integration strategy over other
integration strategies is its avoidance of element partitioning,
which is usually adopted in other methods such as XFEM and
GFEM to employ the numerical integration. Details implementa-
tion of the simplex integration method over arbitrarily shaped
polyhedron can be found in [51].



Fig. 19. The fracture propagation at the base of a dam is shown, in which the domain containing fracture is amplified and shown in detail.
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4. Numerical examples

Numerical tests for fracture propagation problems are carried
out to show the validity and applicability of the present 3D NMM
algorithm and code, which are discussed by comparing with nu-
merical results and experimental results. Since the length of
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fracture propagation used by the following examples is a constant,
the fracture front may not stop at element boundaries. In the
implementation, if the fracture front terminates inside manifold
elements, this fracture front will be prolonged to the intersection
between the boundaries of manifold elements and the extended
fracture surface.

4.1. Beam under four-point loading

As the first example, a pre-notched beam subjected to four-
point shear loading is studied, which is a classical experiment for
structural engineering and is taken from Ref. [52]. The geometry
and boundary conditions are shown in Fig. 7, with
4 m�1 m�0.4 m in geometry and load P¼100 kPa. The material
parameters are taken as Young's modulus = ×E 1.0 10 MPa7 and
Poisson's ratio ν = 0.3. The length of fracture propagation at each
computational step is constantly 0.15 m.

In this test, three models are calculated: 984 manifold elements
with 3937 physical patches, 2465 manifold elements with 10,956
physical patches, and 5078 manifold elements with 23,265 phy-
sical patches. The process of fracture propagation with 23,265
physical patches is shown in Fig. 8. The fracture paths of three
models are shown in Fig. 9(a), which are well consistent with that
obtained in [9] using the Polygonal Finite Element Method (PFEM),
see Fig. 9(b). As already stated in [9], it is again found in this work
that fractures initially move away from each other, and finally
propagate toward the loading points.

4.2. Fracture growth in a pre-notched disc

The brazilian test has been widely used in rock mechanics ex-
periments to indirectly determine the tensile strength of rock-like
brittle materials. As the second example for fracture propagation
analysis, a circular cylindrical specimen with an central pre-ex-
isting fracture subjected to compressed loads along its diameter is
considered, as shown in Fig. 10. In theory, the fractures should
propagate towards to the location of loading points. The para-
meters in this computation are taken as, the diameter of the disc

=D 1 m, Young's modulus = ×E 1.0 10 MPa7 and Poisson's ratio
ν = 0.3. The length of fracture propagation at each computational
step is 0.07 m.

In order to verify the stability and accuracy of 3D fracture
propagation predicted by 3D NMM algorithm and code, two frac-
ture inclination angles are studied, namely θ = °90 (4299 manifold
elements and 20,890 PPs) and θ = °45 (4299 manifold elements
and 20,890 PPs). The fracture propagation paths predicted with
the present 3D NMM, 2D NMM, 2D DDA and experimental results
are compared in Figs. 11–14. As expected, the propagation of the
fracture path with 3D NMM is well consistent with those results
predicted by 2D NMM, 2D DDA [53] and experimental results [54],
as shown in Figs. 12 and 14.

4.3. Fracture growth in a perforated panel with a circular hole

As an example for fracture propagation, a perforated plate with
a fixed bottom edge and subjected to a uniform tensile load at the
top edge is considered, as shown in Fig. 15. This is a benchmark
problem for fracture propagation, which has been studied in [55]
using BEM, and in [56] using extended mesh free Galerkin radial
point interpolation method (X-RPIM). Fig. 16(a) gives the mesh for
this problem which consists of 8068 manifold elements and
35,435 physical patches. The parameters in the computation are
taken as: =H 3 m; =h 1.5 m1 ; =h 1.2 m2 ; =b 0.7 m1 ; =b 0.3 m2 ;
initial fracture length =a 0.1 m; σ = 5 kN/m2, = ×E 3.0 10 MPa4 ,
ν = 0.2. The length of fracture propagation at each computational
step is 1.7 m. The fracture growth paths obtained by the 3D NMM
is shown in Fig. 16. As expected, the propagation of the fracture
path is well consistent with that predicted by X-RPIM [56], see
Fig. 17. As already stated in [55,56] and again found in this study
that the fracture tip approaches the hole, it turns towards the hole
and finally collapses with the hole (Fig. 18).

Table 1 shows the evolution of average maximum principal
stresses at nodes along the fracture front. It is seen that the
average maximum principal stresses increase with the growth of
fracture length. In Ref. [55], the stress intensity factors increase
with fracture length as well.

4.4. Fracture propagation inside a dam concrete foundation

As last example for fracture propagation, the fracture propa-
gation inside a dam concrete foundation is modeled. The similar
previous numerical tests can be found in references [57,58]. The
geometry of the concrete dam and foundation are shown in Fig. 18
(a), which consists of 11681 manifold elements and 58,849 phy-
sical patches. The computational domain which consists of a
penny crack is shown in detail in Fig. 18(b). The height of this dam
is 80 m and overtopping water pressure is applied to the back of
this concrete gravity dam. The length of fracture propagation at
each computational step is 1.7 m. The material parameters in the
computation are taken as: = ×E 3.0 10 MPa4 , ν = 0.2. Initially a
penny crack is embedded inside the concrete dam foundation,
which then grows and propagates to downstream. The process of
fracture propagation is shown in Fig. 19, in which the computa-
tional domain containing fracture is amplified and shown in detail.
5. Discussion and conclusion

The concept of mathematical covers and physical covers is
utilized in the Numerical Manifold Method (NMM), therefore it is
able to handle displacement discontinuities in a straight forward
manner without remeshing. Avoiding the difficulties of remeshing
is significantly important for modeling the fracture propagation,
especially for the analysis of 3D fracture propagation. Compared to
2D problems of fracture analysis, the geometry of 3D fractures is
more complex, which is much more difficult to handle. In this
paper, the fracture algorithm based on the maximum tensile stress
criterion is utilized to determine the direction of 3D fracture
propagation. In the numerical tests, four numerical tests are con-
sidered to validate the algorithm for 3D fracture propagation and
NMM code. It has been shown that the present algorithm and 3D
NMM code have the ability to accurately simulate 3D fracture
propagation stably and effectively.

Since the present work is a preliminary exploration in the
discontinuity modeling using 3D NMM, the advantages of 3D
NMM, such as handling contact problems, have not been well re-
vealed. In our following work, we will further enhance our algo-
rithm and code to analyze complex and realistic rock mechanics
problems in which multiple fracture initiation and propagation,
tensile and shear fractures, and fracture propagations under
compressive loading will be involved.
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